
Model for measurement of thermal expansion coefficient
of concrete by fiber optic sensor

Qingbin Li a,*, Libo Yuan b, Farhad Ansari c

a Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, PR China
b Department of Physics, Harbin Engineering University, Harbin 150001, PR China

c Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7023, USA

Received 11 September 2001; received in revised form 16 February 2002

Abstract

The existence of a coating on an optical fiber results in a difference between the strain of the matrix concrete and that

sensed by the embedded fiber optic sensor. This paper deals with the theoretical model for measurement of thermal

expansion coefficient of concrete by embedded fiber optic sensor. The fiber core, the coating of the optical fiber, and the

matrix concrete were all supposed to be elastic. And the bonding surfaces were supposed to be intact, that is to say,

there is no relative slip deformation at the interface between the matrix concrete and the coating of the optical fiber, and

that between the coating and the fiber core. Based on these assumptions, a theoretical model was developed for

measurement of thermal expansion coefficient of concrete. Some experiments were done to verify the validation of the

theoretical model. And the comparison indicates a good agreement between the experimental and theoretical re-

sults. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Over the past decade, a variety of fiber optic sensor configurations have been developed for measurement
of strains and deformations in structures (Nanni et al., 1991; Ansari, 1993; Eric, 1994; Ansari, 1998; Yuan
and Ansari, 1998; Yuan and Zhou, 1998; Li and Ansari, 2001). Fiber optic sensors can be embedded in
various kinds of structures such as buildings, roads, dams, and other concrete structures to monitor their
strains. Some applications can be found in Li et al. (2002). The optical fiber itself can be divided into two
basic types: single mode and multimode fibers. Normally, the former can be used as localized or mechanical
sensors, such as strain or force sensors, while the latter can be used as sensors in a more wide range such as

International Journal of Solids and Structures 39 (2002) 2927–2937

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +86-10-62771015; fax: +86-10-62782159.

E-mail address: qingbli@hotmail.com (Q. Li).

0020-7683/02/$ - see front matter � 2002 Published by Elsevier Science Ltd.

PII: S0020-7683 (02 )00248-2

mail to: qingbli@hotmail.com


distributed, environmental, thermal and other sensors. This paper was concentrated on the single mode
strain sensor to measure the thermal expansion coefficient of concrete based on interferometer theory.

Thermal expansion is an important factor in all types of structures (Laplante and Boulay, 1994) where
differential heating may occur, either from environmental effects, such as the solar heating of pavements
and bridge decks, or from service conditions, such as in nuclear-reactor pressure vessels or furnace in-
stallations. Failure to allow for thermal expansion, or for thermal stresses resulting from differential ex-
pansion, will cause failure. The differential expansion that occurs between cement paste and aggregate will
give rise to high internal stresses, which may be critical in the case of large temperature changes.

The thermal expansion coefficient will be a variable quantity depending on the mix design and the type of
aggregate used. Since aggregates make up the bulk of concrete, their properties will largely determine the
concrete properties. In a mortar, the coefficient of thermal expansion of concrete can be measured though
the linear length variation caused by temperature. However, the change in length of a mortar bar is too
small to be directly measured with simple instruments.

To deduce the thermal expansion coefficient of a matrix material, the strain of the material with tem-
perature change must be known. In order to know the strain of the matrix material, a relationship between
the strain indicated by the fiber optic sensor and that actually applied to the matrix material must be known
in advance. For the case depicted in this paper, a single mode optical fiber employed for the interferometer
sensor is composed of three circumferential layers. They are: glass core, glass cladding, and protective
coating. In fact, the properties of the glass core and glass cladding are almost the same, and they are usually
considered as one kind of material and called as fiber core (Ansari and Yuan, 1998). In this paper, a
theoretical model for measurement of the thermal expansion coefficient for concrete will be derived.

2. Theoretical model

The analysis pertains to the case shown in Fig. 1 (a detailed description will be given in the experimental
system section). The optical fiber is embedded in a matrix concrete specimen. A linear segment of the
optical fiber and the frame of reference describing the coordinates and dimensional relationships within
various layers of the optical fiber are depicted in Fig. 2 with the force distribution. In this figure, ra and rb
represent the radius of the fiber core and the protective coating, respectively. Shearing stresses at the in-
terface between the core and the protective coating and those between the protective coating and the matrix

Fig. 1. Overall view of the fiber optic experimental set-up.
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induced from the discontinuity of deformation between the two different materials are given by saðn; ra;DT Þ
and smðn; rb;DT Þ respectively. Here DT is the temperature change. The basic assumptions and requirements
pertinent to the development of the model are given below:

(1) The theory is applicable as long as all of the materials involved including the optical fiber core, protec-
tive coating and the matrix concrete behave in a linear elastic manner.

(2) Perfect bond exists at the matrix/coating, and at the coating/core interfaces. This assumption is grossly
true. It ignores the local imperfections along the interface in the formulation of the governing equa-
tions.

(3) Mechanical properties of the core and cladding are considered the same. For simplicity, they are col-
lectively referred to as the fiber core.

(4) The model does not take into account the effect of radial stress. No mechanical stress is loading on the
structure.

For the fiber segment shown in Fig. 2, the analysis begins by imposing force equilibrium at arbitrary section
through the coating, i.e. ra < r < rb,

pðr2 � r2aÞ�rrc þ 2pra

Z L

0

saðra; n;DT Þdn � 2pr
Z L

0

sðr; n;DT Þdn ¼ 0 ð1Þ

where �rrc is uniform normal stress at the central cross section of the coating, sðr; n;DT Þ is the distribution of
the shear stress at arbitrary section through the coating, i.e. ra < r < rb, Eq. (1) can also be rewritten as

1

L

Z L

0

ðr2 � r2aÞ�rrc dn þ 2ra

Z L

0

saðra; n;DT Þdn � 2r
Z L

0

sðr; n;DT Þdn ¼ 0 ð2Þ

Since sðr; nÞ and sgðrg; nÞ are uniform, the following equation can be obtained from Eq. (2):

1

L
ðr2 � r2aÞ�rrc þ 2rasaðra; n;DT Þ � 2rsðr; n;DT Þ ¼ 0 ð3Þ

Since L � r2, the first term of left hand side in Eq. (3) approaches to zero. Then we get the distribution of
the shear stress, sðr; xÞ, at arbitrary section through the coating, i.e. ra < r < rb, as:

Fig. 2. Sketch of forces of fiber-concrete system.
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sðr; xÞ ¼ rg
r

sgðrg; xÞ ð4Þ

The condition of compatibility governing the axial deformation of the optical fiber is employed for the
determination of saðx; ra;DT Þ as follows:

dmðx;DT Þ ¼ daðx;DT Þ þ dcðx;DT Þ ð5Þ

where dmðx;DT Þ is the deformation of the matrix concrete, daðx;DT Þ ¼ dðx; ra;DT Þ is the total deformation
of the optical fiber core caused by the glass fiber thermal expansion and the normal stress inside the glass
fiber, and dcðx;DT Þ ¼ dðx; rc;DT Þ is the shear deformation of the protective coating at the coating/matrix
interface, depending on the interfacial shear stresses between matrix-coating and coating-glass fiber core.
The deformation terms in Eq. (5) can be determined by using the Hooke’s law. To determine dcðx;DT Þ, we
have:

sðx; r;DT Þ ¼ Gcccðx; r;DT Þ ð6Þ

where ccðx; r;DT Þ is the shear strain, Gc ¼ Ec=2ð1þ mcÞ is the shear modulus of the protective coating. Ec

and mc represent the Young’s modulus and Poisson’s ratio of the protective coating respectively. For the
case of small deformation, ccðx; r;DT Þ ¼ dx=dr is true. Thus, dcðx;DT Þ can be expressed in the following
manner:

dcðx;DT Þ ¼
Z xþdc

x
dx ¼

Z rb

ra

sraðx; ra;DT Þ
GcðT Þ

ra
r
dr ¼ ra

GcðT Þ
saðx; ra;DT Þ ln

rb
ra

� �
ð7Þ

The longitudinal deformation of the matrix material and the core of the optical fiber are given by:

dmðx;DT Þ ¼ amxðDT Þ �
Z x

0

rmðn;DT Þ
Em

dn ð8Þ

daðx;DT Þ ¼ afxðDT Þ þ
Z x

0

rfðn;DT Þ
Ef

dn ð9Þ

In which rmðx;DT Þ and Em represent the normal stress and modulus of elasticity of the matrix material
respectively, raðx;DT Þ and Ef are normal stress and modulus of elasticity pertaining to the fiber core re-
spectively, am and af are thermal expansion coefficients of the matrix concrete and the fiber core respec-
tively. Imposing force equilibrium at arbitrary section through the fiber core, raðx;DT Þ is derived as:

raðx;DT Þ ¼ �rra �
2

ra

Z x

0

saðn; ra;DT Þdn ð10Þ

where �rra is the uniform normal stress at the central cross section of the fiber core. In the same way as used
before, the normal stress at the arbitrary cross section inside the matrix concrete can be, accounting for Eq.
(4), obtained as

rmðx;DT Þ ¼
2pra
Am

Z L

x
saðn; ra;DT Þdn ð11Þ

in which, Am is the area of the cross section of matrix material.Substitutions of Eq. (11) in Eq. (8) and Eq.
(10) into Eq. (9) yield the following forms:

dmðx;DT Þ ¼ amxðDT Þ �
2pra
AmEm

Z x

0

Z L

x
saðn; ra;DT Þdn

� �
dx ð12Þ
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daðx;DT Þ ¼ afxðDT Þ þ
1

Ef

Z x

0

�rra

�
� 2

ra

Z x

0

saðn; ra;DT Þdn

�
dx ð13Þ

Substitution of the right-hand side of Eqs. (7), (12) and (13) into the compatibility condition, Eq. (5), yields

amðDT Þx�
2pra
AmEm

Z x

0

Z L

x
saðn; ra;DT Þdn

� �
dx ¼ ra lnðrb=raÞ

Gc

saðx; ra;DT Þ þ afxðDT Þ

þ 1

Ef

Z x

0

�rra

�
� 2

ra

Z x

0

saðn; ra;DT Þdn

�
dx ð14Þ

Differentiation of Eq. (14) yields:

amðDT Þ �
2pra
AmEm

Z L

x
saðx; ra;DT Þdx ¼

ra
GcðT Þ

ln
rb
ra

� �
s0aðx; ra;DT Þ þ afðDT Þ �

2

raEf

Z x

0

saðx; ra;DT Þdx

ð15Þ

Differentiation of Eq. (15) yields:

s00aðx; ra;DT Þ � k2saðx; ra;DT Þ ¼ 0 ð16Þ

where

k2 ¼
2

raEf
þ 2pra

AmEm

ra
Gc

lnðrb=raÞ
ð17Þ

Solution to Eq. (16) is of the following form:

saðx; ra; T Þ ¼ C1ðDT Þ coshðkxÞ þ C2ðDT Þ sinhðkxÞ ð18Þ

where the constants of integration, C1ðDT Þ and C2ðDT Þ, are determined from the force boundary condi-
tions:

rað0Þ ¼ �rra ð19Þ

raðLÞ ¼ 0 ð20Þ

Hence, by imposing these boundary conditions on Eq. (10), C1ðDT Þ and C2ðDT Þ can be evaluated as:

C1ðDT Þ ¼ 0; C2ðDT Þ ¼
rak�rra

2½coshðkLÞ � 1	 ð21Þ

Substitution of C1ðDT Þ and C2ðDT Þ into Eq. (18) yields the function describing the distribution of inter-
facial shear stresses between the core and the protective coating:

saðx; ra;DT Þ ¼
rak�rra

2½coshðkLÞ � 1	 sinhðkxÞ ð22Þ

where �rra is unknown till now, but can be determined by substituting Eq. (22) into Eq. (13) as follows:

�rra ¼ Ef

daðL;DT Þ
L � afðDT Þ

1� sinhðkLÞ�kL
kL½coshðkLÞ�1	

ð23Þ

It should be noted that daðL;DT Þ in Eq. (23) is measured by the fiber optic sensor in the temperature
change, DT . Theoretically, the shear stress distribution is shown in Fig. 3 with the different temperature
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changes, DT ¼ ðT � T0Þ. Longitudinal stress distribution in the optical fiber core is determined from sub-
sequent substitution of Eq. (22) into Eq. (10):

raðx;DT Þ ¼ �rra

coshðkLÞ � coshðkxÞ
coshðkLÞ � 1

ð24Þ

In order to induce the coefficient of expansion of the matrix material, we substitute Eq. (22) into Eqs. (7),
(12) and (13), these yield:

dcðL;DT Þ ¼
kr2a�rra ln

rc
ra

� �
sinhðkLÞ

2Gc½coshðkLÞ � 1	 ð25aÞ

daðL;DT Þ ¼ afLðDT Þ þ
�rra

Ef

L
�

� sinhðkLÞ � kL
2½coshðkLÞ � 1	

�
ð25bÞ

dmðL;DT Þ ¼ amLðDT Þ �
pr2a�rra

AmEm

kL coshðkLÞ � sinhðkLÞ
k½coshðkLÞ � 1	

� �
ð25cÞ

Substitution of Eqs. (25a), (25b), (25c) into Eq. (5) yields

am ¼ af þ
�rra

LðDT Þ
kr2a lnðrc=raÞ sinhðkLÞ
2Gc coshðklÞ � 1½ 	

�
þ 1

Ef

L
�

� sinhðkLÞ � kL
2 coshðklÞ � 1½ 	

�

þ pr2a
AmEm

kL coshðkLÞ � sin kðkLÞ
k coshðkLÞ � 1½ 	

� �	
ð26Þ

By Eq. (26), one can get the coefficient of thermal expansion of the matrix material. It should be noted that
when the matrix is large enough to neglect its deformation induced from normal stress inside, Eq. (26)
becomes

am ¼ af þ
�rra

LðDT Þ
kr2a lnðrc=raÞ sinhðkLÞ
2Gc coshðkLÞ � 1½ 	

�
þ 1

Ef

L
�

� sinhðkLÞ � kL
2 coshðkLÞ � 1½ 	

�	
ð27Þ

Fig. 3. Distribution of the shear stress at the interface between the fiber core and the protective coating along fiber optic sensor.
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3. Experimental system

Michelson interferometers have been extensively employed for characterization of laser and light
emitting diodes (LED) in terms of coherence length. Coherence length of a light source pertains to the
ability of the lightwave to retain a stable phase difference in time. Lasers are capable of producing single
wavelength emissions possessing long coherent lengths. On the other hand LED’s produce white light of
low coherence. A white light supplier such as an LED produces broad band emissions, or emissions
containing a wide range of wavelengths (wide spectrum). In a Michelson white light interferometer ar-
rangement, light from an LED is split into two beams, as shown in Fig. 4. One of the beams travels a fixed
distance (reference beam). The path length of the other beam is variable. Then the beams are recombined. If
the path length of the variable beam of light made equal to that of the reference beam, then an interference
pattern similar to that given in Fig. 5 is generated. The difference in path length over which the interference
pattern resides is used for the determination of coherence length. This same technique can be utilized as a
powerful tool for measurement of deformations and strains. A fiber optic sensor based on the Michelson
white light interferometer is depicted in Fig. 1. The measurement system is comprised of an LED, a fiber
optic coupler for separating and recombining the light, two optical fiber arms with partially reflective
surfaces, and a scanning mirror mounted on a stepper motor positioning system. The length of the fiber

Fig. 4. Fiber optic white light interferometer strain sensor system.

Fig. 5. Output of fiber optic white light interferometer illuminated by a LED source with central wavelength 1300 nm.
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optic sensor arm is fixed, and the reference arm is made slightly shorter than the sensing arm (about 1–2
mm). Separate beams of light travel through the reference and the sensing arms of the optical fiber. The
reflective surfaces define the gauge length of the sensor. The reflective surfaces in both of the optical fibers
guide the light back to a detector by way of a coupler. The sensing arm is embedded in the mortar bar under
test. In the start position, the mirror scans a short distance in front of the reference arm. Once the sum of
the scanned distance plus the length of the reference arm equal that of the sensing arm white light fringes
similar to that given in Fig. 5 appear. The zero order fringe which is approximately in the center of fringe
pattern and has the highest amplitude corresponding to the exact optical path matching of these two beams.
This procedure can be repeated for locating the new white light fringe pattern due to thermal expansion of
the sensing arm. As shown in Fig. 6, the distance between the zero-order fringe patterns for the undeformed
and deformed positions gives the amount of the optical path that changes in gauge length 2L. The inter-
ferometric fiber optic sensor provides for a high-resolution absolute deformation measurement capability.
The sensitivity of the measurements depends on the resolution of the scanning mirror. For this reason, in
the present study experiments, a high-resolution stepper motor (1 lm step intervals) was employed for
coarse scanning of the distance, and the piezoelectric actuator (sub-micron resolution) was used for a fine
tuning of the location of the fringe pattern. The procedure can be repeated for measurement of successive
deformations by way of automation.

The displacement of the mirror is equal to the optical path changing of the fiber with the gauge length 2L
it can be expressed as

Dx ¼ 2 nDLðefÞ½ þ DnðefÞL	 ð28Þ
where Dx is the displacement of the scanning mirror. The first term DLðefÞ at the right side in Eq. (28)
represents the physical change of optical fiber length produced by the strain, it is directly related to axial
strain efðx;DT Þ induced by thermal expansion through the expression

DLðefÞ ¼ Lef ð29Þ

Fig. 6. Deformation of fiber embedded in cement vs. temperature.
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The second term, the change in optical path due to a change in the refractive index of the fiber core, it is
given by

Dn ¼ � 1

2
n3½ð1� lÞp12 � lp11	ef ð30Þ

Thus, we have

Dx ¼ 2 nLef

�
� 1

2
n3½ð1� lÞp12 � lp11	Lef

	

¼ 2 n
�

� 1

2
n3½ð1� lÞp12 � lp11	

	
Lef

¼ 2neffLefðx;DT Þ

ð31Þ

where neff ¼ n� 1
2
n3½ð1� lÞp12 � lp11	 represents the effective refractive index of the fiber core. For the

silica materials at wavelength k ¼ 1300 nm, the parameters are n ¼ 1:46, Poisson ratio l ¼ 0:25, and
photoelastic constants p11 
 0:12, and p12 
 0:27 are taken from Ansari and Yuan (1998). Using these data,
the effective index can be calculated as neff 
 1:19.

4. Results

In order to measure the thermal expansion coefficient of concrete materials, a 305 mm length single-
mode optical fiber is embedded in the same length mortar bar. The cross section of which is 25� 25 mm2.
The specimen was cured in a standard curing room for 7 days, and then moved out to the air in a normal
room. Before the test, the specimen was saturated in water with room temperature for 24 h. Put the mortar
bar into the temperature chamber along with the same length reference fiber in order to eliminate the
influence due to the part of optical fiber outside the mortar.

The result for the pure cement paste mortar bar with the cement water ratio ¼ 1:0.46 is shown in Fig. 6,
and its thermal expansion coefficient can be calculated as aCW ¼ 17:5� 10�6/�C by Eq. (27) and the data
given by Table 1. It is very close to the normal values of cement, 11–20� 10�6/�C (Neville, 1981).

Fig. 7 corresponds to the testing results measured by the mortar bar mixed by cement and sand with the
ratio ¼ 1:0.46:2.43 corresponding to cement, water and sand. The thermal expansion coefficient for this
kind material can be calculated as aCSW ¼ 15:8� 10�6/�C. It is consistent with the normal domain of these
values, 10:1–18:5� 10�6/�C (Neville, 1981).

Table 1

The data of materials characteristics

Materials parameters Symbols Values Unit

Young’s modulus of the glass material Ef 7:2� 1010 Pa

Young’s modulus of the cement paste material Em 1:8� 1010 Pa

Young’s modulus of the cement and sands paste material Em 2:0� 1010 Pa

Young’s modulus of the concrete material Em 2:4� 1010 Pa

Poisson’s ratio of silicon coating material mc 0.499 –

Shear modulus of the protective coating material Gc 8:5� 105 Pa

Optical fiber length embedded in matrix 2L 305 mm

Radius of the outer boundary of the protective rb 102.5 lm
Glass fiber radius ra 62.5 lm
Thermal coefficient of glass fiber af 5:5� 10�7 1/�C
Parameter k k 0.11 1/mm
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For concrete material, the experimental results are illustrated in Fig. 8. The mix proportion by weight of
the concrete used in this mortar bar were 1:2.43:2.74:0.46 corresponding to cement:sand:aggregate:water.
The thermal expansion coefficient for this kind of concrete is aCSAW ¼ 12:8� 10�6/�C. It is also consistent
with the normal domain of these values, 7:4–13:1� 10�6/�C (Neville, 1981).

Fig. 7. Deformation of fiber embedded in cement vs. temperature.

Fig. 8. Deformation of fiber embedded in mortar bar vs. temperature.
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5. Conclusions

In this paper, the theoretical model for measurement of thermal expansion coefficient of concrete by
embedded fiber optic sensor was proposed. The fiber core, the coating of the optical fiber, and the matrix
concrete were supposed to be elastic materials. All the bonding surfaces were supposed to be intact, that is
to say, there is no relative slip deformation at the interfaces. Some experiments were done to verify the
validation of the theoretical model. The previous study supports the following conclusions:

1. Based on the elasticity theory, the shear transferring of the fiber optic sensor can be determined. And the
strain-transferring coefficient can also be determined for the fiber optic sensor embedded in concrete
mortar bar with temperature change.

2. The theoretical model for measurement of thermal expansion coefficient of concrete can be used for
practical application, which possess a similar precision to the normal method.
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